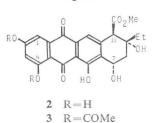
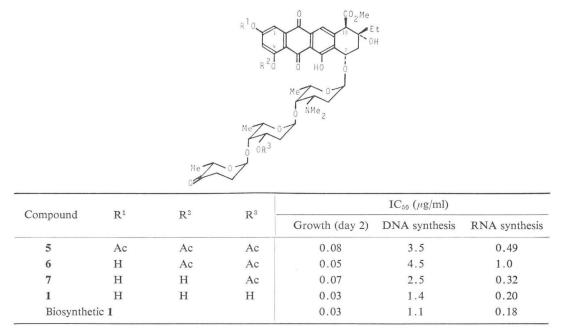
CHEMICAL MODIFICATION OF ANTHRACYCLINE ANTIBIOTICS. V SYNTHESIS OF 2-HYDROXYACLACINO-MYCIN A BY CHEMICAL GLYCOSIDATION


Sir:

A new anthracycline antibiotic, 2-hydroxyaclacinomycin A $(1)^{1}$, which has a potent antitumor activity against L1210 leukemia in mice, has been produced by microbial glycosidation of 2-hydroxyaklavinone $(2)^{2}$. We have also reported⁸ the chemical glycosidation of various anthracyclinones with a trisaccharide (4) obtained from aclacinomycin A^{4,5}. In this paper, we will report on the synthesis of 1 by chemical glycosidation. The activities of 1 and its *O*acetyl compounds in inhibiting the growth of cultured L1210 cells are also described.

The direct glycosidation of 2 with $O-\alpha$ -Lcinerulosyl- $(1 \rightarrow 4)$ - O - $(3 - O - acetyl - 2 - deoxy - \alpha - L - deoxy - \alpha - deoxy - \alpha - L - deoxy - \alpha - deoxy - \alpha - L - deoxy - \alpha - deoxy - \alpha - deoxy - deo$ fucosyl)- $(1 \rightarrow 4)$ - α , β -L-rhodosamine (4)⁸⁾ gave 3''-O-acetyl-2-hydroxyaclacinomycin A (7) (7% yield) and many side products. Therefore, the 2- and 4-hydroxyl groups of 2 were protected. Treatment of 2 (120 mg) with boroacetic anhydride⁶) [B(OH)₈ (52 mg) - Ac₂O (0.51 ml)] in tetrahydrofuran (THF) for 30 minutes at room temperature, followed by addition of pyridine (0.027 ml) completed the selective acetylation, affording 2,4-di-O-acetyl-2-hydroxyaklavinone (3) in 87% yield. 3: mp $113 \sim 115^{\circ}$ C; $[\alpha]_{D}^{24} + 90.7^{\circ}$ (c 0.03, CHCl₃); $\lambda_{\max}^{CHCl_3}$ 260, 286, 417, 432 nm; $\nu_{\text{max}}^{\text{KBr}}$ 1780, 1735, 1680, 1625 cm⁻¹; ¹H NMR $(\text{CDCl}_{s}) \delta 1.08 \text{ (t, CH}_{s}, J=6 \text{ Hz}), 1.50 \sim 2.35 \text{ (m,}$ $2 \times CH_2$), 2.35, 2.45 (s, $2 \times COCH_3$), 3.48 (d, OH-7, J=3.5 Hz), 3.69 (s, COOCH₃), 3.88 (s, OH-9), 4.05 (s, H-10), 5.32 (bs, H-7, $W_{\rm H} = \sim 8$ Hz), 7.23 (d, H-3, J=2.5 Hz), 7.61 (s, H-11), 7.96 (d, H-1, J=2.5 Hz), 13.25 (s, OH-6).

Compound 3 was coupled with 4 by the following one-pot reaction. A CH_2Cl_2 solution of 3 (65 mg) was added to a solution of the bromo sugar from 4 (87 mg), prepared by reaction at $-60^{\circ}C$ with (CF_3SO_2)₂O (0.042 ml) in the presence of *n*-Bu₄NBr (122 mg) and 2,4,6-collidine (0.075 ml) in CH_2Cl_2 . After 2 hours at 23°C, the same amount of similar freshly prepared bromo sugar solution was again added at $-60^{\circ}C$ and the reaction kept for 2 hours at 23°C. The mixture was worked up and chromatographed on a silica gel column. The first eluate with



CHCl_s gave unreacted 3 (46% recovery); the second eluate with CHCl₈ - MeOH (80:1) af-2,4,3"-tri-O-acetyl-2-hydroxyaclacinoforded mycin A (5) in 30% yield and 4,3"-di-O-acetyl-2-hydroxyaclacinomycin A (6) in 5% yield. 5: mp $137 \sim 140^{\circ}$ C; $[\alpha]_{D}^{24} - 113.3^{\circ}$ (c 0.03, CHCl_s); $\lambda_{\max}^{CHCl_a}$ 259, 266, 418, 438 nm; ν_{\max}^{KBr} 1780, 1730, 1675, 1630 cm⁻¹; ¹H NMR (CDCl₂) δ 2.08, 2.37, 2.49 (s, $3 \times \text{COCH}_{3}$), 2.17 (s, $N(\text{CH}_{3})_{2}$), 3.66 (s, COOCH_s), $4.95 \sim 5.55$ (m, $3 \times \text{anomeric-H}$, H-7, H-3"), 7.27 (d, H-3), 7.64 (s, H-11), 7.98 (d, H-1), 13.24 (s, OH-6); Anal. (calcd. for C₄₈H₅₉NO₁₉. 2.5H,O): C 57.71 (57.64), H 6.21 (6.11), N 1.40 (1.27). **6**: mp 167 ~ 171°C; $[\alpha]_D^{24} - 110.5^\circ$ (*c* 0.04, CHCl_s); $\lambda_{\max}^{CHCl_s}$ 270, 418, 440 nm; ν_{\max}^{KBr} 1770, 1730, 1675, 1625 cm⁻¹; ¹H NMR (CDCl₈) δ 2.08, 2.37 (s, $2 \times COCH_8$), 2.29 (s, $N(CH_8)_2$), 3.75 (s, COOCH₃), 4.95~5.55 (m, 3×anomeric-H, H-7, H-3"), 6.58 (d, H-3), 7.17 (d, H-1), 7.41 (s, H-11), 13.30 (s, OH-6). It was confirmed that the C-1' anomeric position of 5 possessed the α configuration based on ¹H NMR analysis (H-1': δ 5.55, W_H = ~6 Hz). The β -glycoside corresponding to 5 was not found in this reaction.

Brief treatment of 5 with methanolic sodium methoxide (0.1 N, 4 equivalents) in THF for 20 minutes at 0°C gave 3"-O-acetyl-2-hydroxyaclacinomycin A (7) in 74% yield, after purification. 7: mp $169 \sim 170^{\circ}$ C; $[\alpha]_{D}^{24} - 42^{\circ}$ (c 0.04, CHCl_s); $\lambda_{\max}^{CHCl_s}$ 270, 287, 442 nm; ν_{\max}^{KBr} 1735, 1675, 1625 cm⁻¹; ¹H NMR (CDCl_s) δ 2.08 (s, COCH_s), 2.22 $(s, N(CH_8)_2), 3.73 (s, COOCH_8), 4.95 \sim 5.60 (m,$ 3×anomeric-H, H-7, H-3"), 6.28 (d, H-3), 6.77 (d, H-1), 7.43 (s, H-11), 11.92, 12.64 (br, OH-4 and -6). Furthermore, similar methanolysis of 5 for 2 hours at room temperature under a N2 atmosphere furnished 2-hydroxyaclacinomycin A (1) in 65% yield: mp 166~167°C; $[\alpha]_{\rm p}^{24}$ +43.2° (c 0.04, MeOH); λ^{90%MeOH} 222, 256, 295, 450 nm; ν_{max}^{KBr} 1735, 1675, 1610 cm⁻¹; ¹H NMR $(CDCl_3) \delta 2.30$ (s, N(CH₃)₂), 3.72 (s, COOCH₃), 4.95~5.60 (m, 3×anomeric-H, H-7), 6.37 (d, H-3),

Table 1. Inhibitory effects of 1 and its acetates against L1210 leukemia cells.

6.83 (d, H-1), 7.37 (s, H-11). These physical and spectroscopic data were essentially identical with those¹⁾ of **1** obtained by biotransformation. Thus, the preparation of **1** by regio- and stereo-selective glycosidation was accomplished.

The effects of **1** and its synthetic intermediates (*O*-acetyl compounds) against cultured L1210 leukemia cells were examined by a previously described method³⁰. As shown in Table 1, chemically synthetic **1** was biologically identical to material of microbial origin. *O*-Acetyl compounds **5**, **6** and **7** showed lower activities than **1** against the growth of L1210 cells and nucleic acid synthesis. In all cases, RNA synthesis was more strongly inhibited than DNA synthesis.

Acknowledgment

We wish to thank Dr. Y. MATSUZAWA of our laboratory for the *in vitro* antitumor data.

Hiroshi Tanaka Takeo Yoshioka Akihiro Yoshimoto Yasutaka Shimauchi Tomoyuki Ishikura *Tomio Takeuchi *Hamao Umezawa Central Research Laboratories Sanraku-Ocean Co., Ltd., Johnan, Fujisawa, Japan *Institute of Microbial Chemistry, Kamiosaki, Shinagawa, Tokyo, Japan

(Received January 14, 1983)

References

- OKI, T.; A. YOSHIMOTO, Y. MATSUZAWA, T. TAKEUCHI & H. UMEZAWA: New anthracycline antibiotic, 2-hydroxyaclacinomycin A. J. Antibiotics 34: 916~918, 1981
- MATSUZAWA, Y.; A. YOSHIMOTO, N. SHIBAMOTO, H. TOBE, T. OKI, H. NAGANAWA, T. TAKEUCHI & H. UMEZAWA: New anthracycline metabolites from mutant strains of *Streptomyces* galilaeus MA144-M1. II. Structure of 2-hydroxyaklavinone and new aklavinone glycosides. J. Antibiotics 34: 959~964, 1981
- 3) TANAKA, H.; T. YOSHIOKA, Y. SHIMAUCHI, Y. MATSUSHITA, Y. MATSUZAWA, T. OKI & T. ISHIKURA: Chemical modification of anthracycline antibiotics. IV. Synthesis of new anthracyclines with trisaccharide. J. Antibiotics 35: 312~320, 1982
- OKI, T.; Y. MATSUZAWA, A. YOSHIMOTO, K. NUMATA, I. KITAMURA, S. HORI, A. TAKAMATSU, H. UMEZAWA, M. ISHIZUKA, H. NAGANAWA, H. SUDA, M. HAMADA & T. TAKEUCHI: New antitumor antibiotics, aclacinomycins A and B.

J. Antibiotics 28: 830~834, 1975

5) OKI, T.; I. KITAMURA, Y. MATSUZAWA, N. SHIBAMOTO, T. OGASAWARA, A. YOSHIMOTO, T. INUI, H. NAGANAWA, T. TAKEUCHI & H. UMEZAWA: Antitumor anthracycline antibiotics, aclacinomycin A and analogues. II. Structural determination. J. Antibiotics 32: 801~819, 1979

 FIESER, L. F. & M. FIESER: Reagent for Organic Synthesis. Vol. 1, pp. 63~64, John Wiley & Sons, Inc., New York, London, 1967